On the Existence of Pure Strategy Nash Equilibria in Integer-Splittable Weighted Congestion Games
نویسندگان
چکیده
We study the existence of pure strategy Nash equilibria (PSNE) in integer–splittable weighted congestion games (ISWCGs), where agents can strategically assign different amounts of demand to different resources, but must distribute this demand in fixed-size parts. Such scenarios arise in a wide range of application domains, including job scheduling and network routing, where agents have to allocate multiple tasks and can assign a number of tasks to a particular selected resource. Specifically, in an ISWCG, an agent has a certain total demand (aka weight) that it needs to satisfy, and can do so by requesting one or more integer units of each resource from an element of a given collection of feasible subsets. Each resource is associated with a unit–cost function of its level of congestion; as such, the cost to an agent for using a particular resource is the product of the resource unit–cost and the number of units the agent requests. While general ISWCGs do not admit PSNE (Rosenthal, 1973b), the restricted subclass of these games with linear unit–cost functions has been shown to possess a potential function (Meyers, 2006), and hence, PSNE. However, the linearity of costs may not be necessary for the existence of equilibria in pure strategies. Thus, in this paper we prove that PSNE always exist for a larger class of convex and monotonically increasing unit–costs. On the other hand, our result is accompanied by a limiting asumption on the structure of agents’ strategy sets: specifically, each agent is associated with its set of accessible resources, and can distribute its demand across any subset of these resources. Importantly, we show that neither monotonicity nor convexity on its own guarantees this result. Moreover, we give a counterexample with monotone and semi–convex cost functions, thus distinguishing ISWCGs from the class of infinitely–splittable congestion games for which the conditions of monotonicity and semi–convexity have been shown to be sufficient for PSNE existence (Rosen, 1965). Furthermore, we demonstrate that the finite improvement path property (FIP) does not hold for convex increasing ISWCGs. Thus, in contrast to the case with linear costs, a potential function argument cannot be used to prove our result. Instead, we provide a procedure that converges to an equilibrium from an arbitrary initial strategy profile, and in doing so show that ISWCGs with convex increasing unit–cost functions are weakly acyclic.
منابع مشابه
Network Flow Problems and Congestion Games: Complexity and Approximation Results
In this thesis we examine four network flow problems arising in the study of transportation, communication, and water networks. The first of these problems is the Integer Equal Flow problem, a network flow variant in which some arcs are restricted to carry equal amounts of flow. Our main contribution is that this problem is not approximable within a factor of 2n(1− , for any fixed > 0, where n ...
متن کاملOn the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games1
Rosenthal’s congestion games constitute one of the few known classes of noncooperative games possessing purestrategy Nash equilibria. In the network version, each player wants to route one unit of flow on a single path from her origin to her destination at minimum cost, and the cost of using an arc depends only on the total number of players using that arc. A natural extension is to allow for p...
متن کاملPure Nash Equilibria in Player-Specific and Weighted Congestion Games
Unlike standard congestion games, weighted congestion games and congestion games with player-specific delay functions do not necessarily possess pure Nash equilibria. It is known, however, that there exist pure equilibria for both of these variants in the case of singleton congestion games, i. e., if the players’ strategy spaces contain only sets of cardinality one. In this paper, we investigat...
متن کاملOn the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games
Rosenthal’s congestion games constitute one of the few known classes of noncooperative games possessing pure-strategy Nash equilibria. In the network version, each player wants to route one unit of flow on a single path from her origin to her destination at minimum cost, and the cost of using an arc depends only on the total number of players using that arc. A natural extension is to allow for ...
متن کاملRouting (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions
In this work we study weighted network congestion games with playerspecific latency functions where selfish players wish to route their traffic through a shared network. We consider both the case of splittable and unsplittable traffic. Our main findings are as follows: – For routing games on parallel links with linear latency functions without a constant term we introduce two new potential func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011